
Fast and Area-Efficient Hardware Implementation of the K-means
Clustering Algorithm

AWOS KANAN, FAYEZ GEBALI
University of Victoria

Electrical & Computer Engineering
Victoria, BC

Canada
akanan, fayez@uvic.ca

ATEF IBRAHIM
Prince Sattam Bin Abdulaziz University

Alkharj, Saudi Arabia.
Electronics Research Institute, Cairo, Egypt.
University of Victoria, Victoria, BC, Canada.

atef@ece.uvic.ca

Abstract: K-means clustering algorithm aims to partition data elements of an input dataset into K clusters in
which each data element belongs to the cluster with the nearest centroid. The algorithm may take long time to
process large datasets. In this paper, a fast and area-efficient hardware implementation of the K-means algorithm
for clustering one-dimensional data is proposed. In the proposed design, centroids update equations are rewritten
to calculate the new centroids recursively. New centroids are calculated using the current centroid value and
the change in this value that results from adding or removing one data element to or from the cluster. In the
new equations, the division operation appears only in the term that represents this change. The proposed design
approximates only the value of this change by replacing the slow and area-consuming division operation with a shift
operation. New centroids are also calculated without the need to accumulate the summation of all data elements in
each cluster, as in the conventional accumulation-based design of the algorithm. Experimental results show that the
approximation adopted in the proposed design results in a more area-efficient hardware implementation without
affecting the quality of clustering results. Experimental results also show that the algorithm converges faster using
less number of iterations as a result of continuously updating clusters centroids compared to the general update
approach used in the conventional design.

Key–Words: K-means, Clustering, Data Mining, Hardware, Reconfigurable Computing, FPGA.

1 Introduction
K-means algorithm [1] is a clustering algorithm [2]
that is commonly used for data analysis in many fields
like machine learning, pattern recognition, bioinfor-
matics, and image processing. The algorithm aims to
partition data elements of an input dataset into K sub-
groups called clusters such that data elements within
a cluster share some degree of similarity while being
dissimilar to data in other clusters.

Because of its importance and high computational
requirements, various FPGA-based hardware acceler-
ators of the K-means algorithm have already been pro-
posed in the literature [3–8]. In [4], the authors pro-
posed a software/hardware co-design of the K-means
algorithm. In the proposed design, distance calcu-
lation was implemented in hardware while new cen-
troids were calculated by the host computer. The pro-
posed hardware implementation benefited from trun-
cating the bitwidth of the input data, and achieved
a speedup of 50x over the implementation on a 500
MHz Pentium III host processor. The author of [5]
proposed a systolic array architecture of the K-means
clustering algorithm. The aim was to accelerate the

distance calculation unit by calculating the distance
between the input data and the centroids of the K
clusters in parallel. The cluster index is obtained at
the end of the array, and results are sent back to the
host computer to calculate the new centroids. In [6],
the authors proposed an efficient FPGA implementa-
tion of the K-means algorithm by utilizing a floating
point divider [7] for the calculation of new centroids
within the FPGA. The proposed approach required ex-
tra blocks to convert between fixed-point and floating-
point data representations. The speedup of the hard-
ware implementation using this floating point divider
was compared with a hardware implementation that
has the division performed in the host computer. No
speedup or advantages, other than freeing the host for
other tasks while the new centroids are being calcu-
lated in hardware, was gained. The authors of [8] fully
implemented the K-means algorithm in hardware to
cluster Microarray genomic data. The objective of
their work is to have multiple cores of the K-means
algorithm operating on the same chip to cluster multi-
ple datasets in a server solution.

Given the complexity of today’s data, similarity

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 133 Volume 15, 2016

measures and classical clustering algorithms are no
longer reliable in separating clusters from each other
[9]. When considering too many dimensions simul-
taneously, objects become distinct and dissimilarity
does not provide meaningful information to determine
clusters. To overcome this problem, a new approach
that relies on clustering data elements in individual di-
mensions first, and then use the results of this clus-
tering to perform full dimension-wide clustering has
been proposed [9], [10]. In [10], the authors proposed
a clustering technique for high-dimensional gene ex-
pression data. In the proposed technique, genes are
initially clustered in individual dimensions using K-
means algorithm, and clustering results of individual
dimensions are then used for further full dimension-
wide clustering.

The computation of clustering in individual di-
mensions, adopted as a preprocessing phase in [9],
[10], consists of a set of distinct tasks that can be
executed by multiple processing elements in parallel,
with each processing element clustering the data in
one dimension. An area-efficient hardware implemen-
tation of the K-means algorithm for clustering one-
dimensional data allows for more processing elements
to fit on a single chip to run in parallel.

The contributions of this paper can be summa-
rized as:

1. Faster convergence of the K-means algorithm us-
ing less number of iterations compared to the
conventional implementation.

2. Approximate centroids update equations that re-
sult in a more area-efficient hardware implemen-
tation without affecting the quality of clustering
results.

This paper is organized as follows. Section 2
presents the standard K-means algorithm. In Section
3, the conventional accumulation-based hardware de-
sign of the K-means algorithm is presented. The pro-
posed hardware design is introduced in Section 4. Im-
plementation details of all blocks of the proposed de-
sign are presented in Section 5. Experimental results
comparing the proposed and conventional designs are
presented in Section 6. Finally, Section 7 concludes
the paper.

2 K-means Clustering Algorithm
The K-means clustering algorithm aims to partition
an input dataset of m data elements into K subgroups
called clusters such that data elements within a cluster
share some degree of similarity while being dissimilar
to data in other clusters.

Algorithm 1 Pseudo Code of the Standard K-means
Algorithm.
Input:
e=[e1 e2 . . . em] %Input dataset of m data elements
K: %Number of Clusters
Output:
c=[c1 c2 . . . cK] % Cluster centroids
l=[l1 l2 . . . lm] % Cluster labels of e
n=[n1 n2 . . . nK] % No. of data elements in each
cluster
s=[s1 s2 . . . sK] % Sum of all data elements in each
cluster

1: Initialize Centroids(c);
2: done = false;
3: repeat
4: s=[0 0 ... 0];
5: n=[0 0 ... 0];
6: changed = false;
7: for (i=1 to m) do
8: min dist =∞;
9: for (j=1 to K) do

10: if (Dij<min dist) then
11: min dist= Dij;
12: label = j;
13: changed = true;
14: end if
15: end for
16: li = label;
17: slabel+=ei;
18: nlabel++;
19: end for
20: for (k=1 to K) do
21: ck=sk/nk;
22: end for
23: until (changed == false)
24: done = true;

The pseudo code of the standard K-means clus-
tering algorithm is shown in Algorithm 1. The al-
gorithm proceeds in iterations, each iteration begins
with K centroids corresponding to the K clusters. For
the first iteration, clusters centroids are initialized with
random numbers in the range of values in the input
dataset. Each data element is then assigned to one of
the K clusters whose centroid is at minimal distance to
the data element based on a distance metric [4] such
as the Euclidean distance:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 134 Volume 15, 2016

Dij =

√√√√ f∑
k=1

(eik − cjk)2 (1)

and Manhattan distance:

Dij =

f∑
k=1

|eik − cjk| (2)

where Dij is the distance between data element i and
the centroid of cluster j, eik is the value of feature
k of data element i, cjk is the value of feature k of
the centroid of the cluster j, and f is the number of
features or dimensions. In this work, one-dimensional
data is considered. For f=1 in Eqs. (1) and (2), the
distance between a data element and a cluster centroid
is simply the absolute value of the difference between
their values.

Clusters centroids are then updated according to
the new partitioning of the dataset. Centroids up-
date may take place either continuously after the as-
signment of each data element, or once at the end
of each iteration after the assignment of all data el-
ements. Continuous updating of centroids is adopted
in this paper since the more often the centroids are
updated, the faster the algorithm will converge. The
algorithm repeats for a specific number of iterations
or until cluster centroids remain unchanged as a result
of data elements stop moving across clusters [5].

The K-means algorithm can be formally reprepes-
nted as [11]:

Xj(t) = {i : Dij ≤ Dim∀m = 1, ...,K} (3)

where Xj(t) is the set of data elements i assigned to
cluster j at iteration t, Dij denotes a suitable distance
metric, such as the Euclidean or Manhattan distance,
between data element i and cj(t − 1), the centroid of
cluster j calculated in the previous iteration. Initial
centroids cj(0) for the first iteration are selected
randomly. It is also required that the sets Xj are
disjoint, i.e.,

Xj(t) ∩Xm(t) = φ,∀m 6= j. (4)

New clusters centroids are calculated at the end
of each iteration as a simple average by dividing the
summation of all data elements assigned to each clus-
ter by the number of these elements:

sj(t) =
∑

i∈Xj(t)

ei (5)

cj(t) =
sj(t)

nj(t)
(6)

where cj(t) is the updated centroid of cluster j at the
end of iteration t, ei is the value of data element i,
and nj is the number of elements in the set Xj(t).

3 Conventional Implementation of
the K-means Algorithm

The conventional implementation of the standard K-
means clustering algorithm, described in Algorithm 1,
differs from the proposed implementation, that is in-
troduced in Section 4, in two points; the calculation of
the new centroids, and the update frequency of clus-
ters centroids. In the conventional implementation, as
shown in lines 4 and 5 in Algorithm 1, the summa-
tion of all data elements assigned to each cluster along
with the number of these data elements are stored in
special registers. A general update of the clusters cen-
troids are performed at the end of each iteration. The
new centroid of each cluster is calculated by dividing
the summation of all data elements assigned to this
cluster by the number of these elements, according to
line 21 in Algorithm 1 and Eq. (6).

Figure 1 shows the functional blocks of the con-
ventional hardware design of the K-means algorithm
as implemented in [6], [8], [12]. The Distance Cal-
culation unit and the Minimum Distance unit are the
same in both the conventional and proposed designs.
The first unit is responsible for calculating the dis-
tances between the data element and all clusters cen-
troids. These disances are passed to the second unit
to find the minimum distance among them. The index
of the cluster with nearest centroid to the data element
is passed to the Accumulation unit. The value of the
data element is added to the sum of all data elements
assigned to the cluster with the index passed from the
Minimum Distance unit. The register that holds the
number of elements assigned to this cluster is also in-
ceremented by one. This process repeats to assign all
data elements to their nearest clusters. The Centroids
Update unit then calculates the new centroid of each
cluster by dividing the summation of all data elements
assigned to this cluster by the number of these data el-
ements.

4 The proposed Approach
In this section, we introduce our approach to enhance
the conventional hardware design of the K-means al-
gorithm in terms of speed and area efficiency. Algo-

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 135 Volume 15, 2016

Figure 1: Functional Blocks of the Conventional K-
means Algorithm Hardware Design.

rithm 2 shows the pseudo code of the proposed im-
plementation of the K-means algorithm. Initialization
step in line 1 is performed by randomly assigning all
data elements to the K clusters and initialize c, l, and
n based on this random assignment. To achieve faster
convergence of the algorithm, clusters centroids are
updated continuously every time a data element is as-
signed to a cluster, according to lines 14-23 in Algo-
rithm 2. The centroids of two clusters need to be up-
dated; the source cluster, from which the data element
is removed, and the destination cluster, to which the
data element is assigned. Implementation details of
the proposed hardware design, along with the differ-
ences between the conventional and proposed imple-
mentations are described in Section 5.

New centroid update equations, that are derived
in the following subsections, are written in a recursive
form. New centroids are calculated as the sum of the
current centroid value and the change in this value that
results from adding or removing one data element to
or from the cluster. In the new centroid update equa-
tions, division operation appears only in the term that
represents this change. The proposed implementation
approximates only the value of this change by replac-
ing the slow and area-consuming division operation
with a shift operation. The main advantage of rewrit-
ing these equations in this form, as will be shown in
Section 6, is to minimize the effect of this approxima-
tion on the quality of clustering results. Another ad-
vantage of using this recursive form is that new cen-
troids are calculated without the need to accumulate

the summation of all data elements in each cluster, as
in the conventional accumulation-based implementa-
tion of the algorithm. The following subsections in-
troduce the proposed approach to update the centroids
of the source and destination clusters.

Algorithm 2 Pseudo Code of the Proposed K-means
Algorithm Implementation.
Input:
e=[e1 e2 . . . em] %Input dataset of m data elements
K: %Number of Clusters
Output:
c=[c1 c2 . . . cK] % Cluster centroids
l=[l1 l2 . . . lm] % Cluster labels of e
n=[n1 n2 . . . nK] % No. of data elements in each
cluster

1: Initialize(c,l,n);
2: done = false;
3: repeat
4: changed = false;
5: for (i=1 to m) do
6: src = li;
7: min dist =∞;
8: for (j=1 to K) do
9: if (Dij < min dist) then

10: min dist=Dij;
11: dest = j;
12: end if
13: end for
14: if (src 6= dest) then
15: li = dest;
16: changed = true;
17: nsrc--;
18: ndest++;
19: X=Nearest Power of 2(nsrc);
20: Y =Nearest Power of 2(ndest);
21: csrc+=(csrc-ei)>>X;
22: cdest+=(ei-cdest)>>Y ;
23: end if
24: end for
25: until (changed == false)
26: done = true;

4.1 Source Cluster
As a result of removing a data element from its source
cluster, the number of elements asigned to the source
cluster is decremented by one, and the centroid is up-
dated after subtracting the value of data element from
the sum of data elements in the source cluster. We can

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 136 Volume 15, 2016

write the following iterative equations:

nsrc(t) = nsrc(t− 1)− 1 (7)

csrc(t) =
[nsrc(t) + 1]csrc(t− 1)− ei

nsrc(t)
(8)

After simple algebra, we obtain the simplified
equation:

csrc(t) = csrc(t− 1) +
csrc(t− 1)− ei

nsrc(t)
(9)

where:
ei: Value of data element i.
csrc(t− 1): Current centroid of the source cluster.
csrc(t): Updated centroid of the source cluster.
nsrc(t−1): Current number of elements in the source
cluster.
nsrc(t): Updated number of elements in the source
cluster.

4.2 Destination Cluster
After a data element is assigned to its destination clus-
ter, the number of elements in the destination cluster
is incremented by one, and the centroid is updated af-
ter adding the value of the data element to the sum of
data elements in the destination cluster. We can write
the following iterative equations:

ndest(t) = ndest(t− 1) + 1 (10)

cdest(t) =
[ndest(t)− 1]cdest(t− 1) + ei

ndest(t)
(11)

After simple algebra, we obtain the simplified
equation:

cdest(t) = cdest(t− 1) +
ei − cdest(t− 1)

ndest(t)
(12)

where:
ei: Value of data element i.
cdest(t − 1): Current centroid of the destination
cluster.
cdest(t): Updated centroid of the destination cluster.
ndest(t − 1): Current number of elements in the
destination cluster.
ndest(t): Updated number of elements in the destina-
tion cluster.

The values of nsrc and ndest are rounded to their
nearest power of 2 integer, and the division is per-
formed as a shift right by the rounded values accord-
ing to lines 19-22 in Algorithm 2.

5 Hardware Design and Implemen-
tation

The proposed hardware design of the K-means clus-
tering algorithm, shown in Figure 2, consists of four
fully pipelined units. Both Distance Calculation and
Minimum Distance units have the same hardware im-
plementation as in the conventional design of the algo-
rithm. The main differences between the conventional
and proposed designs are in the Accumulation/Count,
and Centroids Update units. Hardware design and im-
plementation details of these units are presented in the
following subsections.

Figure 2: Functional Blocks of the proposed Hard-
ware Design.

5.1 Distance Calculation Unit
The distance calculation unit, shown in Figure 3, reads
one data element every clock cycle, and calculates the
K distances between a data element and the centroids
of the K clusters simultaneously.

5.2 Minimum Distance Unit
The K distances from the previous stage go through
a compare tree to find the index of the cluster with
the minimum distance to the data element as shown
in Figure 4. This unit is pipelined, and the number
of stages is equal to the number of levels in the com-
pare tree, which is equal to dlog2(K)e, where K is the
number of clusters. The output of this unit represents
the label of the nearest cluster to the current data el-
ement. As shown in Figure 4, the data element e is

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 137 Volume 15, 2016

Figure 3: Distance Calculation Unit.

passed through the pipeline stages since it is needed
in next stages to update clusters centroids.

Figure 4: Minimum Distance Unit.

5.3 Count Unit
This unit keeps track of the number of data elements
in each cluster. The Accumulation unit of the conven-
tional design requires 2K registers. K registers to ac-
cumulate the sum of all data elements assigned to each
cluster, and another K registers to store the numbers
of data elements in each cluster. The proposed design,
on the other hand, calculates the new centroids recur-
sively without the need to accumulate the sums of all
data elements in each cluster. Hence, only K registers
are required by the Count unit of the proposed design.
Figure 5 shows the hardware design of the Count unit.
The inputs src and dest represents the labels of the
source and destination clusters of the data element e,
respectively. A comparator is used to check for the
equality of src and dest to make sure that the data ele-

ment is assigned to a new cluster other than its current
cluster. If src and dest are not equal, the counter asso-
ciated with the source cluster is decremented by one
and the counter associated with the destination cluster
is incremented by one, according to equations (7) and
(10) and lines 17 and 18 in Algorithm 2. The values
of the two registers nsrc and ndest are passed to the
Centroids Update unit.

Figure 5: Count Unit.

5.4 Centroids Update Unit
As its name indicates, this unit is responsible for up-
dating the centroids of the source and destination clus-
ters of data elements. In the conventional design, cen-
troids update takes place only after the assignment of
all data elements in the input dataset. New centroids
are calculated by dividing the sum of all data elements
assigned to a cluster by the number of these data el-
ements, which are calculated and stored in the Accu-
mulation unit. In the proposed design, centroids of
the source and destination clusters are updated con-
tinuously after the assignement of each data element
according to equations (9) and (12) and lines 14-23 in
Algorithm 2.

As shown in Figure 6, the Centroids Update unit
is pipelined with three pipeline stages. In the first
stage, the two inputs nsrc and ndest are rounded ei-
ther up or down to their nearest power of 2 integer.
The value of the inputs are checked against a set of in-
tervals, and the rounded outputs are determined based
on the existence of the input in one of these inter-
vals. Shift registers in the second stage are imple-
mented in Verilog using the shift right operator with
variable shift amount equals to the rounded value of
nsrc or ndest. This implementation infers a barrel
shifter, which is a combinational circuit that performs
the shift operation (x >> sh amount) in one clock
cycle, where sh amount is the shift amount. Two
adders are used to calculate the updated values of the
source and destination clusters according to lines 21
and 22 in Algorithm 2. The algorithm proceeds in iter-
ations, and the value of the output changed is used to

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 138 Volume 15, 2016

Figure 6: Centroids Update Unit.

check for algorithm convergence at the end of each it-
eration. A value of zero for this output means that data
elements stop moving between clusters, and hence the
algorithm converges.

The total number of stages in the pipelined data-
path of the proposed design is:

NStages = 1 + dlog2(K)e+ 1 + 3 (13)

NStages = dlog2(K)e+ 5 (14)

where K is the number of clusters

6 Results and Discussion
The proposed design was implemented in Verilog
hardware description language using Xilinx ISE De-
sign Suite 9.2 to target Xilinx Virtex4 XC4VLX25.
Table 1 shows implementation results for clustering a
one-dimensional image dataset, that was used in pre-
vious FPGA [12] and GPU [13] implementations of
the algorithm, into 8 Clusters. The implementation
occupies 8% of the available slices with a maximum
clock frequency of 121 MHz.

Figure 7 shows the effect of adopting the con-
tinuous update of clusters centroids on the speed of
convergence of the proposed design compared to the

general update approach used in the conventional de-
sign. The speedup is calculated as the ratio of the
number of iterations required by the conventional de-
sign to converge, to the number of iterations required
by the proposed design. Behavioral simulation results
for ten runs of the two implementations, described in
Algorithm 1 and Algorithm 2, are shown. Each run
starts with a different set of random initial clusters
centroids. Both implementations were fed with the
same initial centroids in each run. The line on the box
plot connects the average speedups of the 10 runs for
different number of clusters. Simulation results show
that the proposed design converges faster than the con-
ventional design using less number of iterations. It
is clear from the variation of speedup values that the
convergence of the algorithm is highly dependent on
the initial cluster centroids. To avoid biased results
when comparing the two implementations, we use the
same initial centroids in our expirements.

A comparison between the proposed FPGA im-
plementation of the K-means algorithm and previ-
ous FPGA and GPU conventional implementations in
terms of speed is shown in Table 2. In [12], a con-
ventional FPGA implementation of the K-means al-
gorithm is compared with a GPU implementation of
the algorithm presented in [13] for an image process-
ing application. The results were based on a 0.4 Mega
Pixel image dataset clustered into 16, 32, and 64 clus-
ters. GPU results in [13] were based on 2.2 GHz Intel

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 139 Volume 15, 2016

Table 1: Implementation Results for clustring one-dimensional dataset into 8 clusters on Xilinx XC4VLX25.

Logic Utilization Available Used Utilization
No. of Slices 10752 918 8%
No. of Slice Flip Flops 21504 629 3%
No. of 4-input LUTs 21504 1598 7%
Max. Clock Frequency 121 MHz

Figure 7: Speedup of the Proposed Design over the
Conventional Design Calculated as the Ratio of Num-
ber of Iterations Required to Converge.

Core 2 Duo, with 4GB RAM and Nvidia GeForces
9600MGT graphics card. In [12], the targeted FPGA
device was Xilinx XC4VSX35 running at a maximum
clock frequency of 141 MHz.

For the implementation of the proposed design,
time measurements are based on a clock frequency of
121 MHz. The execution time for a single iteration is:

TSingle =
CSingle

F
(15)

where CSingle is the number of clock cycles required
to complete one iteration of the algorithm, and F is
the clock frequency.

The complete execution time of the algorithm is
the time required to complete Niter iterations of the
algorithm before it converges:

TComplete = TSingle ×Niter (16)

Table 2 shows the time per single iteration, and
the complete execution time for the three implementa-
tions. In all cases, both FPGA implementations were
faster than the GPU implementation. The GPU im-
plementation is used as a reference implementation to
compare the speedup of the two FPGA implementa-
tions over it. The proposed implementation took more
time to complete a single iteration compared to the

Figure 8: Speedup of Conventional [12] and Pro-
posed FPGA Implementations of the K-means al-
gorithm over GPU Implementation [13] for a One-
Dimensional Dataset and Different Number of Clus-
ters.

conventional implementation in [12]. One reason for
this is because of the continuous update approach used
in the proposed design, that requires more number
of updates compared to the general update approach
used in the conventional design. The second reason is
that the conventional implementation in [12] achieved
a higher maximum clock frequency compared to the
maximum frequency achieved in the proposed imple-
mentation. However, and as shown if Figure 7, the
continuous update adopted in the proposed design re-
sults in the algorithm to converge after less number
of iterations, and hence reducing the complete exe-
cution time of the algorithm. The speedups of both
FPGA implementations over the GPU implementation
is shown in Figure 8.

To compare our work with the conventional hard-
ware design in terms of area efficiency, the proposed
design is implemented on Xilinx XC4VLX25, the
same FPGA device used in [8]. Table 3 Shows the
number of slices occupied by the Centroids Update
unit of the proposed design, and those occupied by
the Divider used to update clusters centroids in the
conventional design in [8]. To have a valid compari-
son, we do not compare the complete implementations
since the proposed design targets one-dimensional

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 140 Volume 15, 2016

Table 2: Execution Times of GPU, Conventional FPGA, and Proposed FPGA Implementations of the K-means
algorithm for a One-Dimensional Image Dataset and Different Number of Clusters.

K GPU [13] FPGA [12] Proposed
Single

Iteration
Time (ms)

Avg. Complete
Execution
Time (ms)

Single
Iteration

Time (ms)

Avg. Complete
Execution
Time (ms)

Single
Iteration

Time (ms)

Avg. Complete
Execution
Time (ms)

16 21 443 2.8 39.2 3.3 9.57
32 20 421 2.8 42 3.3 10.395
64 23 508 2.8 45.4 3.3 12.37

datasets, while the conventional design in [8] is im-
plemented to cluster a multi-dimensional dataset. As
discussed in Section 5, the two designs differ in the
Accumulation/Count and Centroids Update units. The
proposed design requires half the number of registers
in the Count unit compared to Accumulation unit of
the conventional design. As shown in Table 3, the di-
vider used in the conventional design occupied 8% of
the available slices cmpared to 3% occupied by the
Centroids Update unit of the proposed design. The
area occupied by divider only is equal to the total area
occupied by the proposed design, as shown in Table 1.

To determine the effect of the approximation
adopted in the proposed design on the quality of clus-
tering results, we calculated the total within-cluster
variance, a commonly used quality measure, for both
the approximated and original implementations of the
proposed and conventional designs. In the approxi-
mated implementations, the division operation in cen-
troid update equations (6), for the conventional de-
sign, and (9),(12), for the proposed design, is imple-
mented as a shift right by the nearest power of 2 inte-
ger to nj . As shown in Figure 9, the proposed design
is less sensitive to the error results from approximat-
ing nj compared to the conventional design. For the
proposed design, the quality of clustering results us-
ing the approximated implementation is very close to
that of the original division-based implementation.

7 Conclusion and Future Work
In this paper, we have proposed a fast and area-
efficient FPGA implementation of the K-means algo-
rithm for clustering one-dimensional data. In the pro-
posed implementation, centroids update equations are
rewritten to calculate the new centroids recursively.
The division operation appears in these equations is
replaced with a shift operation. Experimental results
show that this approximation results in a more area-
efficient hardware implementation without affecting
the quality of clustering results. Experimental results
also show that the continuous update of clusters cen-

(a) Conventional Design.

(b) Proposed Design.

Figure 9: Total Within-Cluster Variance for the
Approximated, Shift-based, and Original, Division-
based, Centroids Update Units.

troids adopted in the proposed design results in faster
convergence of the algorithm using less number of
iterations compared to the general update approach
used in the conventional design.

The work presented in this paper shows the early
results of a project that aims to accelerate cluster-
ing algorithms for high-dimensional gene expression
data. As a future work, we intend to use more accurate
apprximation techniques that is suitable for floating-
point data. Also, the proposed implementation will be
used in the clustering of high-dimensional gene ex-

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 141 Volume 15, 2016

Table 3: Area Occupied by the Divider and Centroids Update Units in the Conventional and Proposed Designs,
Respectively.

Area Divider- Conventional
Design [8]

Proposed Centroids
Update Unit

No. of Slices 967 332
Utilization 8% 3%

pression data in individual dimensions as a prepro-
cessing to improve the quality of clustering results.

References:

[1] J. B. MacQueen. Some methods for classifica-
tion and analysis of multivariate observations. In
L. M. Le Cam and J. Neyman, editors, Proc. of
the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–
297. University of California Press, 1967.

[2] Rui Xu, Donald Wunsch, et al. Survey of cluster-
ing algorithms. Neural Networks, IEEE Trans-
actions on, 16(3):645–678, 2005.

[3] Yuk-Ming Choi and Hayden Kwok-Hay So.
Map-reduce processing of k-means algorithm
with FPGA-accelerated computer cluster. In
2014 IEEE 25th International Conference on
Application-specific Systems, Architectures and
Processors (ASAP), pages 9–16. IEEE, 2014.

[4] Mike Estlick, Miriam Leeser, James Theiler, and
John J Szymanski. Algorithmic transformations
in the implementation of k-means clustering on
reconfigurable hardware. In Proceedings of the
2001 ACM/SIGDA ninth international sympo-
sium on Field programmable gate arrays, pages
103–110. ACM, 2001.

[5] Dominique Lavenier. FPGA implementation of
the k-means clustering algorithm for hyperspec-
tral images. In Los Alamos National Laboratory
LAUR 00-3079, 2000.

[6] Xiaojun Wang and M. Leeser. K-means cluster-
ing for multispectral images using floating-point
divide. In 15th Annual IEEE Symposium on
Field-Programmable Custom Computing Ma-
chines FCCM, pages 151–162, April 2007.

[7] Xiaojun Wang and B.E. Nelson. Tradeoffs of
designing floating-point division and square root
on virtex FPGAs. In 11th Annual IEEE Sympo-
sium on Field-Programmable Custom Comput-

ing Machines, 2003. FCCM 2003., pages 195–
203, April 2003.

[8] H.M. Hussain, K. Benkrid, H. Seker, and A.T.
Erdogan. FPGA implementation of k-means
algorithm for bioinformatics application: An
accelerated approach to clustering Microarray
data. In NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pages 248–255,
June 2011.

[9] Emin Aksehirli, Bart Goethals, and Emmanuel
Müller. Efficient cluster detection by ordered
neighborhoods. In Big Data Analytics and
Knowledge Discovery, pages 15–27. Springer,
2015.

[10] Taegyun Yun, Taeho Hwang, Kihoon Cha, and
Gwan-Su Yi. CLIC: clustering analysis of large
microarray datasets with individual dimension-
based clustering. Nucleic Acids Research,
38(Web-Server-Issue):246–253, 2010.

[11] Kai J Kohlhoff, Vijay S Pande, and Russ B Alt-
man. K-means for parallel architectures using
all-prefix-sum sorting and updating steps. Paral-
lel and Distributed Systems, IEEE Transactions
on, 24(8):1602–1612, 2013.

[12] Hanaa M Hussain, Khaled Benkrid, Ali
Ebrahim, Ahmet T Erdogan, and Huseyin Seker.
Novel dynamic partial reconfiguration imple-
mentation of k-means clustering on FPGAs:
comparative results with GPPs and GPUs. Inter-
national Journal of Reconfigurable Computing,
2012:1, 2012.

[13] Grzegorz Karch. GPU-based acceleration of se-
lected clustering techniques. Master’s thesis,
Silesian, 2010.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Awos Kanan, Fayez Gebali, Atef Ibrahim

E-ISSN: 2224-266X 142 Volume 15, 2016

